REPUBLIC OF RWANDA

NATIONAL EXAMINATIONS COUNCIL P.O.BOX 3817 KIGALI

Chemistry III

025

07th Nov 2001 8.30am-11.30am

ORDINARY LEVEL NATIONAL EXAMINATION 2001/2002

SUBJECT

: CHEMISTRY III

LEVEL

: ORDINARY LEVEL

TIME

: 3 HOURS

INSTRUCTIONS:

- This paper consists of THREE Sections A, B and C.
- Answer ALL the questions in section A. (55 marks)
- Answer THREE questions in section B. (30 marks)
- Answer only ONE question in section C. (15 marks)
- Calculators may be used.

Some reactions involving carbon dioxide, CO2 are shown below. Study the chart and answer the questions that follow.

- What are the chemical names and chemical formulae for substances A, B
- b) Write a balanced equation for the formation of substance C from CO₂.
- 7. The molecular formulae of two organic substances X and Y are given below. $X = C_4 H_{10}$, $Y = C_4 H_8$
 - a) Write two structural formulae of substance X and give their chemical names.
 - b) Write one structural formula of Y and give its chemical name.
 - c) Write a balanced chemical equation for the reaction of X with chlorine.
- (2 marks) (1 mark)

(3 marks) (1 mark)

- (1 mark)
- 8. The diagram below shows the direction of movement of Irons during electrolysis of dilute sodium chloride solution (Nacl)

a) Which of the electrode A and B is the anode?

b) Which element (substance) is formed at electrode B? Write an equation for the reaction taking place at B.

c) At electrode A, there are two different gases that are likely to form. What chemical test would you use to show the presence of a gas which is the main product?

(1 mark)

(2 marks)

(1 mark)

9. The table below shows the reactivity of some metals with water and dilute sulphuric acid. Study the table very carefully and answer the questions that follow.

Metal	Reaction with water	wer the questions that follow.
Calcium	Hydrogen formed fast	Reaction with dilute sulphuric acid
Copper		Not advisable
Iron	No reaction	No reaction
	Rust was formed slowly	Hydrogen formed slowly
Magnesium	Hydrogen formed slowly	Hydrogen formed quickly
		Trydrogen formed quickly

- a) Which of the above substances is the most reactive?
- b) Which of the above substances is the least reactive?

- (1 mark (1 mark)
- c) Why is it not advisable to react calcium with dilute sulphuric acid?
- (1 mark)
- d) How would you show that hydrogen is evolved when magnesium reacts with dilute suplhuric acid?
- (1 mark)
- 10. Copper can be extracted from an ore called copper pyrites whose formula is CuFeS2
 - a) Give the chemical names of the elements present in copper pyrites.

(1 mark)

- b) Copper is obtained by heating the ore in controlled supply of air with sand (SiO₂). The reaction is 2CuFeS₂ + 5O₂ - 2Cu + 4SO₂ + 2FeSiO₃
 - How much copper would be obtained by heating 36.7g of CuFeS2.

Atomic mass: Cu = 63.5, Fe = 56, S = 32.

11. The figure below shows some changes of state. The direction of the arrow shows the change of state it is.

a) Name changes or processes 1, 2, 3 and 4.

(2 marks

b) State two differences between a solid and a gas.

(2 marks

12. Calculate the percentage composition of oxygen in one mole of Aluminium sulphate Al₂(SO₄)₃. Relative atomic masses are: Al = 27, S = 32, O = 16.

(3 marks)

13. Study the table below and answer the questions that follow.

Substance	Melting point (°C)	Boiling point (°C)
Methanol	-91	65
Ethanol	-117	79
Water	0	100

a) Which of the three substances is the most volatile?

(1 mark)

b) Which substance becomes a liquid at the highest temperature?

(1 mark)

c) Write the chemical formula for ethanol.

(1 mark

- 14. An organic compound contains 52.17% of carbon, 13% of hydrogen and the rest being oxygen.
 - a) Calculate the empirical formula of the compound.

(3 marks)

b) Given that the relative molecular mass is 92, determine its molecular Formula. (2 marks)

SECTION B (30 MARKS)

Answer three questions in this section.

15. The ore haematite contains iron oxide. The following flow diagram (chart) shows how iron is extracted from its ore haematite. Study the diagram and answer the questions that follow.

a) Name substances X and Y.

(2 marks)

b) The chemical reaction for the formation of iron is

$$Fe_2O_{3(s)} + CO_{(g)} \longrightarrow 2Fe_{(s)} + 3CO_{2(g)}$$

From the above equation, identify which substance is a reducing agent and which substance is an oxidizing agent.

(2 marks)

c) Give the chemical names of three substances in the slag

- (3 marks)
- d) The blast furnace should be located (built) where conditions are suitable for an industry. Mention three conditions to consider before deciding where to put the industry.
- 16. Below is a simplified flow diagram for the manufacture of sulphuric acid. Study the diagram and answer the questions that follow.

a) Write a balanced equation for the formation of sulphur tioxide from oxygen and sulphur dioxide.

(2 marks)

	b)	Star	ting wi	ith 50	cm³ of	sulpl	hur di	ioxide	and t	oUcm ³	01 02	cygen,	2				
	1 H U	i) ii)	Calcul Calcul	ate th ate th	e volu e volu	me of	sulpl oxygo	hur tic	oxide it rem	forme ains ι	d. inrea	icted.		9 9 9 9 9			marks mark
	c)	Nam	e the c	atalys	st use	d in tl	he for	matio	n of s	ılphu	r trio	xide.				(1	mark
8	d) e)	Write i) C ii) C Nam sulpi	e an eccopper carbon e two eccopper two eccopyers two eccopper two eccopyers two e	quation environ envide i	n to si	how h tal pro atmo	oblem	s that	trated	sulph be cau	nuric ised	acid i	e prese	ence o		(1	mark mark #/4
1	7. T	he fol	lowing	is a p	eriodi	c tabl	e sho	wing s	some	eleme:	nts. I	Jse th	e tabl	e and	the		
	e 1	lemen 2	ts sho			er the group		tions	mat 1	Jilow.	-	3	4	, 5	6	7	8
٦		1	•			-								*			
	H		7										T		<u> </u>	ı —	He
						ı	T		7	γ	1		C	N	0	F	(1)
	Na.	Mg				1						A1		P	s	CL	
•	К	Ca														Br	, , ,
															٠) .
	b) c) d) e)	Write Give to Select acidic Use a coppe	many e the ele the syr the fore one e oxide dot ar r II sui	ectron nbols mula lemen and o ld act lphate	of two of the t that one ele ross to	o element will from the showing.	ation action of the second of	of the that b forme basic will fo bondi	eleme elong ed bet e oxid orm ar ing in	ent C. to alk ween e, one amp CH ₄ s	caline elem elen hoter starti	e meta ents M lent th ric oxi ng wit	Mg and nat wil de. h zinc	ll form	ler an	(1 (2 r (2 r (3 r d (2 m	mark) marks) narks) narks) narks)
18	. a)		in how per po			obtai	in a p	ure sa	ample	of zin	c sul	phate	and a	ı pure	samp	ole (2 m	arks)
	b) \	Write ZnS04	an ioni _(aq) + B	ic equ Bacl _{2(ac}	ation	from	the fo	llowin Zncl ₂₍	ng che aq) + I	mical 3aSO₄	reac	tion.				(2 m	arks)
19.		hydro	he aid gen ch an eqı	loride	gas (Hcl) f	rom s	odiun	a chlo	ride (I	expei Vacl)	riment	t to pr	epare		(8 m	arks)
,		1.	Ammo Manga			ide. (N	MgO₂)						· · · · · · · · · · · · · · · · · · ·			(1 n (1 n	iark) iark)

SECTION C: (15 marks)

Answer only one question from this section.

- 20. To determine the concentration of a solution of sulphuric acid, 25cm³ of sulphuric acid was added to 2ml of potassium hydroxide solution. The volume of potassium hydroxide required
 - a) State three pieces of apparatus that would be used in this experiment.

(3 marks)

b) How would you tell that the acid is completely neutralized by the base?

(1 mark)

Given that the equation of the reaction is: $2KOH_{(aq)} + H_2SO_{4(aq)} \longrightarrow K_2SO_{4(aq)} + 2H_2O.$

c) Calculate the number of moles of potassium hydroxide used in the titration.

(2 marks)

d) Calculate the concentration of sulphuric acid in g/dm3.

(5 marks)

Relative atomic masses are H = 1, S = 32, O = 16, K = 39.

Suggest two uses of sulphuric acid and two uses of potassium hydroxide.

(4 marks)

21. In an experiment to determine how hydrogen is produced when magnesium powder reacts with dilute hydrochloric acid, the volume of hydrogen produced was measured at different intervals. The following results were obtained.

Time (Seconds)	0	5	10	20	30	40	50	60
Volume of H ₂ (cm ³)	0	32	52	78	93	95	95	95
	100							

a) Plot a graph of volume of H₂ produced (on the y-axis) versus time (x-axis).

(9 marks)

b) Why is the volume of H₂ constant in the last three results?

(1 mark)

c) Suggest a suitable instrument or piece of apparatus that can be used to measure the volume of H_2 .

(1 mark)

d) Why is the volume of $H_2 = 0 \text{cm}^3$ when the time = 0 seconds? e) How would you prove that hydrogen gas is evolved in each experiment?

(1 mark) (1 mark)

State two industrial uses of hydrogen gas.

(2 marks)

- With the help of equations where possible, state the chemical test that would be used to distinguish each pair of the following substances and state the observation in each
 - a) $Zn(NO_3)_{2(aq)}$ and $Fe(NO_3)_{3(aq)}$
 - b) Nacl_(aq) and Na₂CO_{4(aq)}
- Ethane and Ethanol
- d) SO₂ and CL₂ gases,
- e) $Pb(NO_3)_2$ and $CU(NO_3)_2(S)$

(3 marks each)

END.

CHEMISTRY III 2001/2002

SECTION A

Answer to question 1

Elements Protons Neutrons Electrons
Sodium 11 12 11
Oxygen 8 10 8

- b) Isotopic mass (mass number of oxygen)
 = protons + neutrons
 = 8 + 10 = 18.
- c) Electronic configuration of sodium: 2, 8, 1.
- d) $4Na + O_2 \longrightarrow 2Na_2O$

Answer to question 2

- a) Calcium carbonate
- b) CaCO₃ CaO + CO₂

Rmm of $CaCO_3 = 40 + 12 + 16 \times 3 = 100$

Rmm of CaO = 40 + 16 = 56.

From the equation: 100g CaCO₃ -> 56g of CaO

 $1g \text{ of } CaCO_3 = \frac{56}{100}$

2000g of CaCO₃ \longrightarrow $\frac{56}{100} \times 2000$

= 1120g of CaO

Answer to question 3

3. a)

Name	Chemical formula	Approximate percentage in air
Nitrogen	N ₂	78
Carbondioxide	CO ₂	0.03
Inert gases	Ne, Ar etc.	1

b) One way CO₂ is removed from the atmosphere is through photosynthesis and one way in which CO₂ is supplied to the atmosphere is through respiration.

Answer to question 4.

- a) A bleaching agent is a chemical substance which decolorizes other substances.
- b) $2H_2O_2 \rightarrow 2H_2O \div O_2$
- c) Two ways of speeding up the decomposition are:
 - i) Increasing the concentration of hydrogen peroxide.

- i) Increasing the concentration of hydrogen peroxide.
- iil Using manganese (iv) oxide as a catalyst.

Answer to question 5.

- a) An exothermic reaction is a reaction in which heat is given out.
- b) It means a reversible reaction.
- c) Increasing pressure: Increasing the amount of Ammonia produced.
- d) Increasing temperature: Decreasing the amount of Ammonia produced.

Answer to question 6

- a) A → Carbonic acid, H₂CO₃
 - B Calcium carbonate, CaCO₃
 - C Sodium hydrogen carbonate,
- b) 2NaOH + H₂O + CO₂ --- Na₂CO₃ + 2H₂O

Answer to question 8

- a) Anode is A
- b) Hydrogen is formed at B.

$$2 H^+ + 2e \longrightarrow H_2$$

c) The main product is oxygen, it is tested using a glowing splint, it re-lights a glowing splint.

Answer to question 9

- a) Calcium
- b) Copper
- c) Calcium resets with dilute sulphuric acid forming calcium sulphate which is insoluble and so prevents further reaction of calcium with H₂SO₄.
- d) It burns with a pop sound.

Answer to question 7

a) $X = C_4H_{10}$; $Y = C_4H_8$

Structural formula of X

Butane

2-methy propane

H-C-C= C C H

H H H But-2-ene

Answer to question 10

- a) Chemical names present in copper pyrites are: Copper, Iron, Sulphur
- b) First find Rmm of CuFeS2

$$= 63.5 + 56 + 32 \times 2 = 183.5g$$

$$(2\times183.5)$$
g of CuFeS₂ $\xrightarrow{2\times63.5}$ \times 36.7 = 12.7g.

Answer to question 11

- a) 1 Condensation
 - 2 Evaporation
- 3 Melting
- 4 Sublimation
- b) Two differences between a solid and a gas.

Solid	Gas
Its particles are very close to each other	Its particles are far apart
It has shape	No shape

Answer to question 12

Al₂(SO₄)₃, Its Rmm

$$= (27 \times 2) + (32 \times 3) + (16 \times 12) = 342.$$

% of oxygen =
$$\frac{192 \times 100}{342}$$
 = 56.1%

Answer to question 13.

- a) methanol
- b) water
- c) C₂H₅OH or CH₃-CH₂-OH

Answer to question 14.

a) C

H

O % for oxygen = 100 - (52.1 + 13)

52.17 12 13

34.8

% for oxygen = 34.83

4.3475

13

2.1769

Divide by the smallest

1.3475 2.1769

2

13 2.1769 2.1769 2.1769

6

1

b

Molecular formula $(C_2H_60)_n = 92$

 $(12\times2+1\times6+16)_n = 92.$

46n = 92

 $n = \frac{92}{46} = 2$

Molecular formula (C₂H₆O)₂

 $= C_4H_2O_2$

Empirical formula is C₂H₆O

SECTION B

Answer to question 15

a) X→ Coke (carbon)

Y → lime stone

b) Fe₂O₃ + 3CO → 2Fe + 3CO₂

Fe₂O₃ → oxidizing agent CO → reducing agent c) Slag is calcium silicate: CaSiO₃

Chemical names substances in the slag are: calcium, silicon, oxygen

d) An industry should be built in a place where there is/are: raw material, electric power, water, transport.

Answer to question 16

a) 2SO₂ + O₂ → 2SO₃

b) i) From the equation:

2V of $SO_2 + 1V$ of $O_2 \longrightarrow 2V$ of SO_3

1V of $SO_2 + \frac{1}{2}V$ of $O_2 \longrightarrow 1V$ of SO_3

 50cm^3 of $SO_2 + \frac{1}{2} \times 50\text{cm}^3$ of $O_2 \longrightarrow 50\text{cm}^3$ of SO_3 . 50cm^3 of $SO_2 + 25\text{cm}^3$ of $O_2 \longrightarrow 50\text{cm}^3$ of SO_3 .

- b) ii) Volume of O₂ that remained unreacted: = 50 - 25 = 25cm³
- c) Catalyst, V2O5
- d) i) $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O_3$
 - ii) $C + 2H_2SO_4 \rightarrow 2SO_2 + CO_2 + 2H_2O$
- e) Acid rain which: Increases soil acidity dissolves minerals away (soil infertility destroys stone works of buildings.

Answer to question 17

- a) 9 electrons
- b) 2, 8, 8, 2.
- c) Mg, Ca.
- d) Mg₃

- e) Mg, S, Al.
- f)

H°xCxsH X H°xH

Answer to question 18.

a) Zinc powder and copper II sulphate solution are mixed. The reaction takes place

i.e
$$Zn_{(s)} + CuSO_{4(aq)} \longrightarrow ZnSO_{4(aq)} + Cu_{(s)}$$

After the reaction is over, filtration is done to separate zinc sulphate solution from a brown solid of copper.

ionically,
$$ZnSO_{4(aq)} + BaCl_{2(aq)} \longrightarrow BaSO_{4(s)} + ZnCl_{2(aq)}$$

$$ionically,$$

$$Zn^{2+}(aq) + SO^{2}(aq) \div Ba^{2+}(aq) + 2Cl^{-}(aq) \longrightarrow BaSO_{4(s)} + Zn^{2-}(aq) + 2Cl^{-}(aq)$$

$$ionic equation: Ba^{2+}(aq) + SO_{4}^{2-}(aq) \longrightarrow BaSO_{4(s)}$$

Answer to question 19.

- b) i) NH₃ + HCl → NH₄Cl
 - ii) $MnO_2 + 4HCl \longrightarrow MnCl_2 + Cl_2 + 2H_2O$.

SECTION C

Answer to question 20

- a) Burret, Pippet, Conical flask
- b) When the color of the indicator in the solution just changes.

c)
$$2KOH_{(aq)} + H_2SO_{4(aq)} \longrightarrow K_2SO_{4(aq)} + 2H_2O_{(1)}$$

Number of moles of KOH =
$$\frac{2 \times 34}{1000} = \frac{68}{1000} = 0.068$$
.

d) Let,
$$M_a = 1$$
, $M_b = 2$

$$M_a = ?$$
, $M_b = 2$

$$V_a = 25 \text{cm}^3$$
, $V_3 = 34 \text{cm}^3$

$$\Rightarrow \frac{na}{nb} = \frac{\text{Ma} \times \text{Va}}{\text{Mb} \times \text{Vb}}$$

$$\Rightarrow \frac{1}{2} = \frac{\text{Ma} \times 25}{2 \times 34} \text{ ; Ma} \times 50 = 2 \times 34 \Rightarrow \text{Ma} = \frac{2 \times 34}{2 \times 25} = 1.36 \text{M}.$$

But concentration in g/dm^3 = morality × Rmm

Rmm of
$$H_2SO_4 = (1\times2) + 32 + 16\times4 = 98$$

- \Rightarrow Concentration in g/dm³ = 1.36 ×98 = 133.28g/dm³
- e) Two uses of H2SO4
 - Used to manufacture fertilizers.
 - Used in preparation of salts
 - Used in manufacture of soft soap

Answer to question 21

a) A graph of volume of H2 versus time:

- b) Because the reaction is over.
- c) Syringe
- d) The reaction has not yet started.
- e) Using a burning splint, if a pop sound is observed, then the gas is hydrogen.
- f) Uses of H₂
 - Manufacture of Margarine (fats)
 - Used as fuel.

Answer to question 22.

To distinguish between each of the following substances.

á) Zn $(NO_3)_{2(aq)}$ and Fe $(NO_3)_{3(aq)}$ Reagent: Ammonia solution (NH4OH) With ZN2, a white ppt (precipitate) which dissolves in excess ammonia solution will be observed.

$$ZN^{2*} + 2OH^{-} \rightarrow Zn(OH)_3$$

With Fe³+, a brown ppt insoluble in excess $NH_3)_{(aq)} (NH_4OH)$

b) $Nacl_{(aq)}$ and $Na_2CO_{4(aq)}$

Reagent: Acidified silver nitrate solution.

With Cl, a white ppt observed,

$$Ag^+ + Cl^- \rightarrow AgC I_{(s)}$$

With
$$CO_3^{2-} + 2H^+ \longrightarrow CO_2 + H_2O$$

e) Pb(NO₃)₂ and CU(NO₃)_{2(S)}

Reagents NaOH solution

Observations:

With Pb2+, a white ppt soluble in excess NaOH solution to form a colorless solution.

 $Pb^{2+} + 20H \longrightarrow Pb(OH)_2$ white ppt

With Cu2+, a blue ppt insoluble in excess NaOH

e. $Cu^{2+} + 2OH \longrightarrow Cu(OH)_2$ blue ppt

Or Reagent NH3 (aq)

With Pb²⁺→ a white ppt soluble in excess NaOH.

With Cu²⁺, a blue ppt soluble in excess forming a deep blue solution.

c) Ethane and Ethanol Reagent bromine water

Observations:

- With ethene: it decolorizes bromine water.
- With Ethanol: no observable change
- d) SO₂ and CL₂ gases

Reagents: Acidified KMnO4 or K2Cr2O2 Using KMnO₄ (purple)

- With SO₂ → the purple color of KMnO₄ turns to colorless.
- With Cl2, no observable change.

Using K2Cr2O7

- With SO₂, the color of K₂Cr₂O₇ changes from orange to green.
- With $Cl_2 \longrightarrow no$ observable change.

END.